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1. Basic Results

The function ^(5) of a complex variable s = a + it is defined by the
Dirichlet series and the Euler product:

n, integer; p, prime; ct > 1; ^nd by analytic continuation over the
rest of the complex,domain. It is known^ that l(s) has no finite singu
larity except the simple pole l/(j — 1). It has no zero in tr > 1 and.
only the trivial zeros s=—2, — 4 in a < 0. Infinitely many of
its zeros lie on the vertical line^ 5 = i + it- The Riemann hypothesis
(= RH) is that all non-trivial zeros of ^(s) lie on o =

Let TT(jc) be the number of primes p^ x and li (:!c) the integral
J dtjlog t over 2 ^ < oc. Then it is further known® that the range
of variation of tt (^) —U(jc) must include zb x" infinitely often as

00, where a is the greatest abscissa of any zero of I {s). It was
proved by J. E. Littlewood^ that there exists a number 6>0 such that
the value of v (x) —U(x) obeys each of the inequalities:

7t(x)- li(x)> bVx^P^;
10g:X

77 (^) - U(:x)<-b Vx , (2)

infinitely often as x -> 00. Here, logg;c = log (log x) and logg x
= log (log^x), all logs to the base e.

Starting from the initial point x 2 and any fixed but arbitrary
M> 0, the real half-line x^ xg is transformed into y'^0 and covered
by right-open intervals /„ as follows:

y = li(x) - li{xo); li, -.(n —l)u < nu. (3)
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The number of primes in the ^:-image of /„ is denoted by tt;, (m) or
•rT{Xa,u\n). The prime-number theorem^: Tr(x) amounts to
UTTniu) ^ Nu, summation over 1 oo. This gives:

Lemma 1: RH is true if and only if, for every e > 0 and some
M> 0;

i:i^7r(xo; m; n) - = (4)

It is essential to show that the totality of distinct sequences
(tt (xo, u\ n)} is equivalent to the number of points on a continuous line
segment. This will enable a suitable measure to be introduced. To
this end, the following lemma' is essential;

Lemma 2: There exists at least one u > 0 such that the number
of distinct sample-sequences {tt,, (u)} obtained by shifting the initial point
Xq through a single covering interval of y-length u can be put into
a 1 —1 correspondence with the points of ^^t<\:

Proo/.—Suppose that, for some given, mand x^, the same sequence
{tt,, (m)} is obtained when the initial pointis shifted to the right through
a j-distance it'. It would then follow that the number of primes gained
by any interval at the right is precisely equal to that lost at the left
during the shift. Therefore, every w-interval, separated by the j?-dis-
tancje u — w from the next on either side must contain the same number
of primes. Known separation theorems® by P. Erdos say that there,
exist infinitely many gaps between consecutive primes, larger, than any
preassigned j-length. Hence these w-intervals must be totally void of
any primes.

The results of G. Ricci' show, on the other hand, that there exist
sub-sequences of primes such that the j-distances between consecutive
primes are dense over some non-zero interval (1 —a, 1 + ^). If
a = 1, then take any m< 1 + i3. Otherwise, take an integer k sojarge
that (1 —a)/A: is less than a + j3, and take (1 ~ a)jk = u. In either
case, the Ricci density theorem shows that w must vanish. Thus, for
the chosen u (and there are infinitely many such choices, obviously),
there must be as many distinct sequences as points of 0 < ? < m; this
can be projected upon the unit interval 0 < ^< 1, to complete the '
proofof the theorem (which holds in fact for all w> 0).

Lemma, 3 : // .M = M (z) be the product of all primes ^ and
yr is Enter''s constant, then the number of integers relatively prirne toM
in-: any range h < h < A + R is asymptotic to Rer'̂ l.log zas z
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provided Rjlog zis large compared to 2"''̂ , where 7r(z) is the number
of primed P < z.

Proof—This is essentially the form in which the Sieve of Erato
sthenes is to be used. The integers prime to M are cyclically arranged
modulo M with symmetry about the middle of any cycle kM to

If A = kM the number out of the R consecutive
integers, not divisible by any prime <z is given by:

R -
•R-

+ r ^ 1 r i? ]
.Pi- iPiPii -PiPiPh-

' 5 PuVitPit^' (5)

The square brackets denote the largest positive integer in the enclosed
quotient, or zero. The primes are to run through the complete set
p Since no remainder can be as great as unity, the difference
when the brackets are removed will not exceed ^ (1 + in absolute
value. For any A, we can regard the result as the sum of difference
of two expressions as in (5). The asymptotic value of i?77(1 —1/p),
which is the value of (5) with the brackets removed is Re-yjlog z by
the classic theorem of Mertens.®

2. Lemmas on Measure

Definitions.—A proper frequency distribution is furnished by a
set of real numbers /^ > 0 such that Z f,= \. If A^, A^, A^, ••• be
an indexed set of distinct attributes, an infinite sequence thereof
AiAjAf: ... (not necessarily all distinct) represents a sample, or point
in sample-space. A sequence {A,} wherein the limiting frequency with
which a particular A„ occurs is, for every n, the/„ above has that dis
tribution. By probability is meant a measure function obeying the
usual postulates, defined overthe whole sample-space or over a sub-set
thereof, such that the total measure of the universe of definition is
unity. The probability measure of an event (sub-set of sample-space)
is indicated by the letter P. The n-th term of a sequence has the
designation X„ and P (X„ = Aj) is the probability measure, if it exists,
of the set of sample-points where A^ appears as the «-th term of the
corresponding sequence. The joint probability of a compound event
is' similarly defined, e.g., P{Xi = A,; X^ = A^ ...). Asample-sequence
is normal if every finite combination A^A^A^ ... occurs with frequency
equal to the product of the individual component frequencies. Cor
respondingly, the events Xt^A^, X, = A^ ... are said to be indepen
dent in probability if for any number of such events the compound
probability is the product of the component individual probabilities.
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'Lemma 4: Given a set of attributes Aq, Aj, Aj, • • • and a corres
ponding proper frequency distribution. Then there exists a mapping
whereby: (1) The totality of sample-sequences is mapped in a 1—1
manner onto the right-open unit interval 0 < t < 1. (2) The Lebesgue
measure on the map is equivalent to probability measure over the sample
space. (3) Almost all sample-sequences are normal. with , the given
basic frequency distribution and all the events X,- = A,- are independent
in probability. . ,

Proo/.—The actlial map is constructed as follows. Divide (0, 1)
into right-open sub-intervals by marking off successive points =i= /o),
h=fo+fi,'"ti=fi + "• Then subdivide the sub-intervals
CO, ?o), (fo, ?i), • • • in the same manner, each in proportion to its total
length. And so on, step by step. For the sequence ^4.4^
take first the sub-interval immediately to the left of ti in the fir«t sub
division. Then in the next subdivision of this selected ^interval, that
to the left of the point marked off with the subscript _/; and so on,
taking the next stage of subdivision for each successive subscript. The
sequence of nesting intervals obviously converges to a single point in
(0, 1).- Conversely, to each such point there corresponds just one
sequence of subscripts, provided a suitable convention is made (to
ayoid duplication) about sequences terminating in an infinite succession
of zeros or of. the final index r v/hen the total number of frequencies
is finite and equal to r-\-\. The properties listed follow obviously,
with this mapping.

The well-known theorem of BoreP: almost every number in (0, 1)
is normal in a 'decimal' expansion to any base becomes a special case of
this lemma when the number of attributes are finite, with equal fre
quencies. The proof, for finite or infinitely many basic frequencies,
may be derived from the law of large numbers^" in probability theory.

Lemma 5; Given a sample-sapce where the basic frequencies have
a Poisson distribution withparameter u, the sample-sequences are normal,
and the attribute A^ assigned the numerical value r. Then almost all
points of the sample-space obey the inequalities'.

- (1 + e) ^/2Nu loga Nu < S'l {Xi - u)

< (1 + e) •y'lNu log2 Nu, (6)

with at most a finite number of exceptions as 'H -^00, for every k > 0.

Froof.—This is the upper law of the iterated logarithm, abbre
viated ULIL. The Poisson distribution has /,• = e-"u' ji !. The standard

9
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prooP^ for binomial distributions extends immediately to the Poisson,
hence need not be repeated here. The canonical mapping of Lemma
4 is to be used.

Lemma 6: ULIL holds with unit probability for c// e > A— 1 > 0 .
if the X( of lemma 5 have the Poisson distribution with parameter u and
a joint distribution such that: (1) The sum of anyfinite number k of conse
cutive X, has the Poisson distribution with parameter ku. (2) Th'i
probability that \ {X, —m)| > A\/2Nulog2Nu for some A> 1 and
at least one k < N does not exceed the corresponding probability when
the X, have distributions independent in probability, for all large N.

Proof.—Lemma 5 does not depend upon any particular mapping;
nor is independence necessary, though it suffices. The first Borel-Can-
telli lemma^^ upon which ULIL depends does not require independence.
The - two conditions given here suffice for the text-book proof of
Lemma 5 wted/^ as may be verified by inspection.

3. Applications

In what follows, only the sample-sequences {tt(a-q, m; «)} are con
sidered. The attribute will be taken to have presented itself when
ever a member of sucli a sequence has the value k. Again, X, is simply
the numerical value of the /"-th member of such a sequence. Then we
have;

Lemma 7: The sequences {tt„ (m)} have the Poissonfrequency distri
bution with fr =e""u7r!, in the sense of unit probability measure.

Proof—This follows from known^® results, and could be proved
again from the following considerations: As the number of trials
(integers tested per covering interval) increases, the probability of the
event (of a number being prime) tends to zero, but nevertheless the
expectation (primes 'expected' per interval) tends to m; and the pro
bability is unaffected by the results of any number of previous trials,
or at worst, the change in the probability is an infinitesimal of higher
order than P itself. This last point is pi-oved in the next Lemma; the
rest are obvious.

There now arise three possibilities:

(A) The sequences K, («)} are independent in probability, in the
sense that the actual values of any finite number of Z's will not deter
mine Xq, nor affect the probability for a given value of any other Xf to
occur. In that case, ULIL of Lemma 5 and therefore Lemma 1 would
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kold, hence RH is true. In addition, the lower law of the iterated
logarithm would also apply, which would enable the Littlewood
inequalities (2) to be improved with the boimds replaced by
± (1 —, e) -\/2 Xlog jclog2

(B) The sequences may not'be independent, but the effect of any
dependence upon the sums of consecutive members may be com-^
pensatory. That is, deviations in the sums from expectation might be
no greater (in probability) than in case A. It suffices if the probability
measure of the set IZtt,, (u) —Nu\> a (summation over indices
1 to N) does not exceed that in the case A. Then Lemma 5 and ULIL
could still hold, but (2) cannot be improved and the Littlewood
inequalities might be the best possible.

(C) The effect of dependence (if any) might be cumulative. That
is, the occurrence of an excess from expectation in either direction,
for sums of consecutive tt,, (u) might imply a similar excess in the same
direction somewhere else in the same sequence (positive autocorrela
tion). In this case, ULIL need not hold, nor RH.

The sieve of Eratosthenes, as will be seen, excludes C.

Lemma 8: The terms of a sequence {tt,, (u)} are asymptotically
independent in probability; moreover, the ejfect {if any) upon sums of
consecutive term.s of any deviation from independence cannot be cumula
tive, but at most compensatory.

Proo/.—In the discussion that follows, consider only such covering
intervals as lie in the range (xjl, x).- This suffices because: (i) The
prime-number theorem (and hence also the Poisson distribution) is
asymptotically valid over such lengths of the real half-line; in fact,
even over much srrialler ranges, {x, x + x") if a >. 38/61, as is known.^^
(«•) The proof and applications of ULIL may be carried through with
successive ranges of order {Ah'', Ab^+'̂ ), with any fixed h > 1 and /c = 1,
2, 3, ..., so that there is no loss of generality involved. In the dis
cussion, however, x is only to be regarded as a large background para
meter whose sole use is to estimate the relative magnitudes of various
arithmetic functions that appear. "If :<• were specified exactly, there
would be no question of probability, as everything would be exactly
known. ~

, In the sieve of Eratosthenes, tlie multiples of 2, 3, 5, ... are succes
sively deleted; at each stage, the smallest number, left is the next
prime to be used in deletion. This way, every prime and only ,primes
are obtained, as a succession of smallest survivors of the deletions
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Every integer is deleted by its smallest prime factor, and once deleted,
so remains regardless of hov/ many other primes divide it. If this
division were independent (in the sense of probability theory), there
would be nothing left to prove, and alternative A above would be the
only one left. Lemma 3, however, says that primes p ^ h, where h
is the length of an interval /„ hence h ph ulogx have multiples in every
/r and act independently (with probability Ijp each) over the given
range, or indeed any range of order not less than Beyond
this, it is not possible to go. The larger the primes, the less chance
of several of them dividing an integer in the range. If independence
in division were present, the Mertens theorem^ would have given us
for the prime number theorem 2e"'̂ x/log x, instead of xjlog x. This is
taken by some to show that "probability methods do not apply in
prime-number theory", but is in fact irrelevant. The independence
in probability of the number of primes in various tt,, («), specified only
by the index, not with a priori reference to the number of primes con
tained nor by knowledge of the initial point Xq, could still be a result
of the sieve. The crucial question is: Given that a certain number of
primes has actually occurred in a given stretch {i.e., a given number
of consecutive /„), what can then be said of the chances of primality
anywhere else as affected or unaffected by this occurrence ?

Directly, we are co.ncerned only with deletions by primes p ^ \/x
The small primes act independently over the range, by Lemma 3, as
noted above. The only effect that the occurrence of a composite
number can have is that its prime factors will not operate in the imme
diate neighbourhood; for every such inoperative prime, the proba.
bility will be locally enhanced by a factor 1/(1 — 1//?). But a certain
number of such dividing primes must become inoperative on the
average over any stretch, while the probability for primality and
expectation are always given overall by the prime-number theorem.
This means that unu[,ually many inoperative primes may cause a local
enhancement of the probability for primality; unusually few, a lower
ing of the probability for primality. Otherwise, nothing can be said.
For deleting primes between h and », the inoperative primes must
be greater than and the local factor can be calculated by pack,
ing the maximum possible number, .of primes lost as close to
from above as possible. The extreme factors are thus easily shown
to be bracketed by (I ±log2^xllogx). For deleting primes not
exceeding x '̂'̂ , k>2 fixed, the loss or gain will be not greater in either
direction than (1 ± ^loga^/logx). In each case, the sign makes
the extreme factors compensatory, while smaller factors in any case
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cannot be cumulative. Finally,i!" for stretches of length V* oj more
all the deleting primes have multiples. Unusually many deletions
means unusually many factors-higher than Vx; again, the tendency
cannot be cumulative, and the foregoing shows that the probability is
changed by very little; asymptotically, not changed at all.

Theorem 1: (RH) No sampk-sequence {v(x„, u; n)} can lie within
the exceptional set ofprobability measure zero with respect to the ULIL
of Lemma 6, for any e > 0. Whence all. non-trivial zeros of C(s) lie
on the vertical line s = i + it. I

Proof.—Starting with any and some fixed u derived from Lemma
2j map all sequences with initial points in onto (0,1). The
entire coset to be obtained by the displacement of any initial point in
/i by an integral number of intervals in either direction is also mapped
upon the same point of (0,1). 4^11 members of a coset ffave clearly the
same limiting-frequency properties. Probability measure is now taken
as Lebesgue measure over the jcoset inap on (0, 1). The probability
can be calculated as the Lebes'igue integral of the corresponding fre-.
quency. Thus, the basic distribution is Poissonian 'with parameter
u, by Lemma 7. The distribution for k consecutive covering intervals
amounts to that with covering intervals of length ku, and is therefore
Poissonian with parameter ku, '|As for the condition 2 of Lemma 6,
we note that the expectation pef stretch of length ku on the j-line is
ku primes, and that, for largei::c, it is physically impossible for the
deviation from this expectation to be. as much as '\/lNu.\pg,iNu,ifk
is small enough, e.g., the total stretch covered'by ku consecutive intervals

does not exceed log Here, the P is zero hence less than
with total independence, as one would expect from the compensatory
eflfect found above. Whatever the extreme actually found in stretches
of this order, one can repeat the arguments of lemma 8. Thus, con
dition 2, of Lemma 6 is also satisfied by virtue of the non-cumulative
effect of the sieve, and for every e > 0. Therefore, ULIL applies to
almost all sample-sequences {tt; (h)}. For large N, the partial sums
of the first N terms of any two sample sequences whose initial pX)ints
lie within the j'-distance u of pach other cannot differ by more than
MlogiVw. Therefore, either all the sample sequences satisfy
or. none. The latter case is excluded, as the measure of the. excep
tional set would then have to be unity instead of zero. This proves
the theorem and the Riemanri hypothesis.

Theorem 2: The non-trivial zeros of all Dirichlet L-functions lik;^'
yyise Ije ori tlfe vertical line s = ^\t,



134 JOURNAL OFthe INDIAN SOCIETY OFAGRICULTURAL STATISTICS

This is the. extended RH or the Piltz conjecture. The result is
merely stated without proof, because the same methods and arguments
as above suffice, The consequences of these two theorems are given
in books on speciahzed function theory^ and advanced number .theory.®
Improvement of the inequalities (2) by the present methods would
depend upon LLIL and hence the Borel-Cantelli lemma, which
requires independence in probability.

The Poisson distribution of Lemma 2 allows many new results
to be obtained directly. For example, gaps of y-Iength t or more bet
ween consecutive primes have the distribution function tr*. However,
it shoald be noted that the Poisson distribution is not essential for RH,
which can be proved without any distribution at all, merely by taking
the Poissonian as a bounding distribution for estimating the devia
tions- of sums from expectation. Also, the Poisson distribution would
not follow directly, granted RH. In other words. Lemma 8 is more
important than Lemma 7.

Counter-examples of a fairly complicated nature could. be pro
duced which do not affect Lemma 7 nor the inequalities (2) but for
which RH is false. These are formed by adding pseudo-primes and
by striking out (in suitable stretches) sufficiently 'thin' sequences of
the primes. Such counter-examples do not affect our arguments
because such changes in the series of prime numbers within the positive
integers will block sieve deletion, invalidate the Euler product, and
destroy unique factorization—all of which are essential to RH (a.s
they are fo our present arguments).

The result also indicates that the zeros of ^{s) on the vertical
line o = ^ should have a distribution of their own, presumably also
the Poisson distribution. The proper transformation here must replace
the co-ordinate t on the vertical line by the integral J log tdt to the
upper limit Tll-n. The results will be considered elsewhere.
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